OCT and OCTA for diabetic retinopathy

Instructor: Kaitlyn A. Sapoznik, OD, PhD

Course Outline

I. Background
 I. Diabetes background/review
 I. Continued increase in US and global prevalence
 II. Increased in diabetic retinopathy
 III. Continued push for retinal imaging technology to aid in early
detection and diagnosis

II. Diabetic retinopathy
 I. Review traditional clinical grading
 I. Early treatment diabetic retinopathy study
 (ETDRS)/International diabetic retinopathy grading scale
 I. Based on fundus photos/fundus examination
 II. Diabetic macular edema (DME) and Clinically significant
 macular edema (CSME) grading (ETDRS)
 I. Based on fundus photos/fundus examination

II. OCT classification of DME
 I. Morphology classification
 I. Diffuse vs. Focal (qualitative OCT)
 II. Quantification of retinal thickness
 III. Non-center involved (Non-CI) vs. Center involved (CI) DME
 I. CI-DME
 I. Central subfield (1mm) thickness of >= 250 microns
 I. Preserved visual acuity
 II. Visual acuity loss
 II. Summary of DCDR.net clinical trials that restrict to CI-DME
 III. Protocol V and VA in CI-DME (DRDC.net protocol V)
 I. Does CI-DME with good vision (20/25 or better) benefit from
 treatment vs. observation?

IV. Optometric management and considerations for DME
 I. Access to OCT
 II. What if they have CSME?
 III. Do they have CI or NonCI-DME?
 I. CI-DME \rightarrow Good VA?
 I. May be able to monitor before referral to retina/OMD
 IV. Ability to monitor closely
 V. Level of diabetic retinopathy
 I. Consider referral regardless if severe NPDR or worse

V. Case examples
 I. CI-DME w/ good visual acuity but diffuse and severe NPDR
 I. Refer
 II. Non-CI-DME

III. OCTA in diabetic retinopathy
I. Review OCTA concepts
 I. Quick, non-invasive tool
 II. Motion contrast images
 I. Repeated b-scans → detection of movement → blood flow or perfusion mapping
 III. Depth resolution
 I. Superficial vs. deep vascular complex
IV. Review OCTA report

II. OCTA use in diabetic retinopathy
 I. Subclinical lesions
 I. Microaneurysms, etc
 II. Can aid in detection of perfusion vs. non-perfusion
 I. Vessel density mapping
 I. Blood vessel area/measured area
 II. Foveal avascular zone
 I. Can be enlarged
 II. Highly variable in normal population
 III. Macular ischemia
 III. NVE and NVE
IV. Anterior segment OCTA
 I. Iris NV and NVG in diabetes
V. OCTA impact on management of DR
 I. We are still learning...
 I. Likely that findings may impact diagnosis, management, etc. in the future, but currently no accepted change on clinical management of diabetic retinopathy
 II. Anecdotal evidence
 I. Non-perfusion → great risk of progression to PDR?

VI. Case examples
 I. Healthy, young pt with enlarged FAZ despite no clinically detectable DR
 II. Examples of non-perfusion associated with DR

IV. Conclusions
 I. OCT allows better localization and assessment of truly vision threatening (foveal threatening) macular edema
 I. Still an evolving topic; does not mean the CSME is not high risk but may impact when we are referring patients for treatment
 II. OCTA provides promise in helping us obtain a better picture of DR quickly and non-invasively