OCT and OCTA for diabetic retinopathy

Instructor: Kaitlyn A. Sapoznik, OD, PhD

Course Outline

- I. Background
 - I. Diabetes background/review
 - I. Continued increase in US and global prevalence
 - II. Increased in diabetic retinopathy
 - III. Continued push for retinal imaging technology to aid in early detection and diagnosis
 - II. Diabetic retinopathy
 - I. Review traditional clinical grading
 - I. Early treatment diabetic retinopathy study (ETDRS)/International diabetic retinopathy grading scale
 - . Based on fundus photos/fundus examination
 - II. Diabetic macular edema (DME) an Clinically significant macular edema (CSME) grading (ETDRS)
 - I. Based on fundus photos/fundus examination
- II. OCT classification of DME
 - I. Morphology classification
 - I. Diffuse vs. Focal (qualitative OCT)
 - II. Quantification of retinal thickness
 - III. Non-center involved (Non-CI) vs. Center involved (CI) DME
 - I. CI-DME
 - I. Central subfield (1mm) thickness of >/= 250 microns
 - I. Preserved visual acuity
 - II. Visual acuity loss
 - II. Summary of DCDR.net clinical trials that restrict to CI-DME
 - III. Protocol V and VA in CI-DME (DRDC.net protocol V)
 - I. Does CI-DME with good vision (20/25 or better) benefit from treatment vs. observation?
 - IV. Optometric management and considerations for DME
 - I. Access to OCT
 - II. What if they have CSME?
 - III. Do they have CI or NonCI-DME?
 - I. CI-DME \rightarrow Good VA?
 - I. May be able to monitor before referral to retina/OMD
 - IV. Ability to monitor closely
 - V. Level of diabetic retinopathy
 - I. Consider referral regardless if severe NPDR or worse
 - V. Case examples
 - CI-DME w/ good visual acuity but diffuse and severe NPDR
 - I. Refer
 - II. Non-CIDME
- III. OCTA in diabetic retinopathy

- I. Review OCTA concepts
 - I. Quick, non-invasive tool
 - II. Motion contrast images
 - Repeated b-scans → detection of movement → blood flow or perfusion mapping
 - III. Depth resolution
 - I. Superficial vs. deep vascular complex
 - IV. Review OCTA report
- II. OCTA use in diabetic retinopathy
 - I. Subclinical lesions
 - I. Microaneurysms, etc
 - II. Can aid in detection of perfusion vs. non-perfusion
 - I. Vessel density mapping
 - I. Blood vessel area/measured area
 - II. Foveal avascular zone
 - I. Can be enlarged
 - II. Highly variable in normal population
 - III. Macular ischemia
 - III. NVE and NVE
 - IV. Anterior segment OCTA
 - I. Iris NV and NVG in diabetes
 - V. OCTA impact on management of DR
 - I. We are still learning...
 - Likely that findings may impact diagnosis, management, etc. in the future, but currently no accepted change on clinical management of diabetic retinopathy
 - II. Anecdotal evidence
 - I. Non-perfusion → great risk of progression to PDR?
 - VI. Case examples
 - I. Healthy, young pt with enlarged FAZ despite no clinically detectable DR
 - II. Examples of non-perfusion associated with DR

IV. Conclusions

- I. OCT allows better localization and assessment of truly vision threatening (foveal threatening) macular edema
 - I. Still an evolving topic; does not mean the CSME is not high risk but may impact when we are referring patients for treatment
- II. OCTA provides promise in helping us obtain a better picture of DR quickly and non-invasively